3.4.13 \(\int \frac {x \sqrt {a+b x^2+c x^4}}{d+e x^2} \, dx\) [313]

Optimal. Leaf size=168 \[ \frac {\sqrt {a+b x^2+c x^4}}{2 e}-\frac {(2 c d-b e) \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{4 \sqrt {c} e^2}+\frac {\sqrt {c d^2-b d e+a e^2} \tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x^2}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x^2+c x^4}}\right )}{2 e^2} \]

[Out]

-1/4*(-b*e+2*c*d)*arctanh(1/2*(2*c*x^2+b)/c^(1/2)/(c*x^4+b*x^2+a)^(1/2))/e^2/c^(1/2)+1/2*arctanh(1/2*(b*d-2*a*
e+(-b*e+2*c*d)*x^2)/(a*e^2-b*d*e+c*d^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2))*(a*e^2-b*d*e+c*d^2)^(1/2)/e^2+1/2*(c*x^4+
b*x^2+a)^(1/2)/e

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 168, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {1261, 748, 857, 635, 212, 738} \begin {gather*} \frac {\sqrt {a e^2-b d e+c d^2} \tanh ^{-1}\left (\frac {-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt {a+b x^2+c x^4} \sqrt {a e^2-b d e+c d^2}}\right )}{2 e^2}-\frac {(2 c d-b e) \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{4 \sqrt {c} e^2}+\frac {\sqrt {a+b x^2+c x^4}}{2 e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x*Sqrt[a + b*x^2 + c*x^4])/(d + e*x^2),x]

[Out]

Sqrt[a + b*x^2 + c*x^4]/(2*e) - ((2*c*d - b*e)*ArcTanh[(b + 2*c*x^2)/(2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4])])/(4*
Sqrt[c]*e^2) + (Sqrt[c*d^2 - b*d*e + a*e^2]*ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x^2)/(2*Sqrt[c*d^2 - b*d*e +
a*e^2]*Sqrt[a + b*x^2 + c*x^4])])/(2*e^2)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 748

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + 2*p + 1))), x] - Dist[p/(e*(m + 2*p + 1)), Int[(d + e*x)^m*Simp[b*d - 2*a*e + (2*c*
d - b*e)*x, x]*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !RationalQ[m] || Lt
Q[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 857

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 1261

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[
Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]

Rubi steps

\begin {align*} \int \frac {x \sqrt {a+b x^2+c x^4}}{d+e x^2} \, dx &=\frac {1}{2} \text {Subst}\left (\int \frac {\sqrt {a+b x+c x^2}}{d+e x} \, dx,x,x^2\right )\\ &=\frac {\sqrt {a+b x^2+c x^4}}{2 e}-\frac {\text {Subst}\left (\int \frac {b d-2 a e+(2 c d-b e) x}{(d+e x) \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{4 e}\\ &=\frac {\sqrt {a+b x^2+c x^4}}{2 e}-\frac {(2 c d-b e) \text {Subst}\left (\int \frac {1}{\sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{4 e^2}+\frac {\left (c d^2-b d e+a e^2\right ) \text {Subst}\left (\int \frac {1}{(d+e x) \sqrt {a+b x+c x^2}} \, dx,x,x^2\right )}{2 e^2}\\ &=\frac {\sqrt {a+b x^2+c x^4}}{2 e}-\frac {(2 c d-b e) \text {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x^2}{\sqrt {a+b x^2+c x^4}}\right )}{2 e^2}-\frac {\left (c d^2-b d e+a e^2\right ) \text {Subst}\left (\int \frac {1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac {-b d+2 a e-(2 c d-b e) x^2}{\sqrt {a+b x^2+c x^4}}\right )}{e^2}\\ &=\frac {\sqrt {a+b x^2+c x^4}}{2 e}-\frac {(2 c d-b e) \tanh ^{-1}\left (\frac {b+2 c x^2}{2 \sqrt {c} \sqrt {a+b x^2+c x^4}}\right )}{4 \sqrt {c} e^2}+\frac {\sqrt {c d^2-b d e+a e^2} \tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x^2}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x^2+c x^4}}\right )}{2 e^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.43, size = 153, normalized size = 0.91 \begin {gather*} \frac {2 e \sqrt {a+b x^2+c x^4}+4 \sqrt {-c d^2+e (b d-a e)} \tan ^{-1}\left (\frac {\sqrt {c} \left (d+e x^2\right )-e \sqrt {a+b x^2+c x^4}}{\sqrt {-c d^2+e (b d-a e)}}\right )+\frac {(2 c d-b e) \log \left (b+2 c x^2-2 \sqrt {c} \sqrt {a+b x^2+c x^4}\right )}{\sqrt {c}}}{4 e^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x*Sqrt[a + b*x^2 + c*x^4])/(d + e*x^2),x]

[Out]

(2*e*Sqrt[a + b*x^2 + c*x^4] + 4*Sqrt[-(c*d^2) + e*(b*d - a*e)]*ArcTan[(Sqrt[c]*(d + e*x^2) - e*Sqrt[a + b*x^2
 + c*x^4])/Sqrt[-(c*d^2) + e*(b*d - a*e)]] + ((2*c*d - b*e)*Log[b + 2*c*x^2 - 2*Sqrt[c]*Sqrt[a + b*x^2 + c*x^4
]])/Sqrt[c])/(4*e^2)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(756\) vs. \(2(144)=288\).
time = 0.16, size = 757, normalized size = 4.51 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(c*x^4+b*x^2+a)^(1/2)/(e*x^2+d),x,method=_RETURNVERBOSE)

[Out]

1/2/e*(c*(x^2+d/e)^2+(b*e-2*c*d)/e*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)+1/4/e*ln((1/2*(b*e-2*c*d)/e+c*(x^2
+d/e))/c^(1/2)+(c*(x^2+d/e)^2+(b*e-2*c*d)/e*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/c^(1/2)*b-1/2/e^2*ln((1/
2*(b*e-2*c*d)/e+c*(x^2+d/e))/c^(1/2)+(c*(x^2+d/e)^2+(b*e-2*c*d)/e*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))*c^
(1/2)*d-1/2/e/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(x^2+d/e)+2*((a*e^2-
b*d*e+c*d^2)/e^2)^(1/2)*(c*(x^2+d/e)^2+(b*e-2*c*d)/e*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))*a+1/
2/e^2/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(x^2+d/e)+2*((a*e^2-b*d*e+c*
d^2)/e^2)^(1/2)*(c*(x^2+d/e)^2+(b*e-2*c*d)/e*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))*d*b-1/2/e^3/
((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/e*(x^2+d/e)+2*((a*e^2-b*d*e+c*d^2)/e
^2)^(1/2)*(c*(x^2+d/e)^2+(b*e-2*c*d)/e*(x^2+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x^2+d/e))*c*d^2

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x^4+b*x^2+a)^(1/2)/(e*x^2+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(c*d^2-%e*b*d+%e^2*a>0)', see `
assume?` for

________________________________________________________________________________________

Fricas [A]
time = 1.03, size = 1074, normalized size = 6.39 \begin {gather*} \left [\frac {{\left (4 \, \sqrt {c x^{4} + b x^{2} + a} c e - {\left (2 \, c d - b e\right )} \sqrt {c} \log \left (-8 \, c^{2} x^{4} - 8 \, b c x^{2} - b^{2} - 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c x^{2} + b\right )} \sqrt {c} - 4 \, a c\right ) + 2 \, \sqrt {c d^{2} - b d e + a e^{2}} c \log \left (-\frac {8 \, c^{2} d^{2} x^{4} + 8 \, b c d^{2} x^{2} + {\left (b^{2} + 4 \, a c\right )} d^{2} + 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c d x^{2} + b d - {\left (b x^{2} + 2 \, a\right )} e\right )} \sqrt {c d^{2} - b d e + a e^{2}} + {\left ({\left (b^{2} + 4 \, a c\right )} x^{4} + 8 \, a b x^{2} + 8 \, a^{2}\right )} e^{2} - 2 \, {\left (4 \, b c d x^{4} + {\left (3 \, b^{2} + 4 \, a c\right )} d x^{2} + 4 \, a b d\right )} e}{x^{4} e^{2} + 2 \, d x^{2} e + d^{2}}\right )\right )} e^{\left (-2\right )}}{8 \, c}, \frac {{\left ({\left (2 \, c d - b e\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c x^{2} + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{4} + b c x^{2} + a c\right )}}\right ) + 2 \, \sqrt {c x^{4} + b x^{2} + a} c e + \sqrt {c d^{2} - b d e + a e^{2}} c \log \left (-\frac {8 \, c^{2} d^{2} x^{4} + 8 \, b c d^{2} x^{2} + {\left (b^{2} + 4 \, a c\right )} d^{2} + 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c d x^{2} + b d - {\left (b x^{2} + 2 \, a\right )} e\right )} \sqrt {c d^{2} - b d e + a e^{2}} + {\left ({\left (b^{2} + 4 \, a c\right )} x^{4} + 8 \, a b x^{2} + 8 \, a^{2}\right )} e^{2} - 2 \, {\left (4 \, b c d x^{4} + {\left (3 \, b^{2} + 4 \, a c\right )} d x^{2} + 4 \, a b d\right )} e}{x^{4} e^{2} + 2 \, d x^{2} e + d^{2}}\right )\right )} e^{\left (-2\right )}}{4 \, c}, \frac {{\left (4 \, \sqrt {-c d^{2} + b d e - a e^{2}} c \arctan \left (-\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c d x^{2} + b d - {\left (b x^{2} + 2 \, a\right )} e\right )} \sqrt {-c d^{2} + b d e - a e^{2}}}{2 \, {\left (c^{2} d^{2} x^{4} + b c d^{2} x^{2} + a c d^{2} + {\left (a c x^{4} + a b x^{2} + a^{2}\right )} e^{2} - {\left (b c d x^{4} + b^{2} d x^{2} + a b d\right )} e\right )}}\right ) + 4 \, \sqrt {c x^{4} + b x^{2} + a} c e - {\left (2 \, c d - b e\right )} \sqrt {c} \log \left (-8 \, c^{2} x^{4} - 8 \, b c x^{2} - b^{2} - 4 \, \sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c x^{2} + b\right )} \sqrt {c} - 4 \, a c\right )\right )} e^{\left (-2\right )}}{8 \, c}, \frac {{\left (2 \, \sqrt {-c d^{2} + b d e - a e^{2}} c \arctan \left (-\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c d x^{2} + b d - {\left (b x^{2} + 2 \, a\right )} e\right )} \sqrt {-c d^{2} + b d e - a e^{2}}}{2 \, {\left (c^{2} d^{2} x^{4} + b c d^{2} x^{2} + a c d^{2} + {\left (a c x^{4} + a b x^{2} + a^{2}\right )} e^{2} - {\left (b c d x^{4} + b^{2} d x^{2} + a b d\right )} e\right )}}\right ) + {\left (2 \, c d - b e\right )} \sqrt {-c} \arctan \left (\frac {\sqrt {c x^{4} + b x^{2} + a} {\left (2 \, c x^{2} + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{4} + b c x^{2} + a c\right )}}\right ) + 2 \, \sqrt {c x^{4} + b x^{2} + a} c e\right )} e^{\left (-2\right )}}{4 \, c}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x^4+b*x^2+a)^(1/2)/(e*x^2+d),x, algorithm="fricas")

[Out]

[1/8*(4*sqrt(c*x^4 + b*x^2 + a)*c*e - (2*c*d - b*e)*sqrt(c)*log(-8*c^2*x^4 - 8*b*c*x^2 - b^2 - 4*sqrt(c*x^4 +
b*x^2 + a)*(2*c*x^2 + b)*sqrt(c) - 4*a*c) + 2*sqrt(c*d^2 - b*d*e + a*e^2)*c*log(-(8*c^2*d^2*x^4 + 8*b*c*d^2*x^
2 + (b^2 + 4*a*c)*d^2 + 4*sqrt(c*x^4 + b*x^2 + a)*(2*c*d*x^2 + b*d - (b*x^2 + 2*a)*e)*sqrt(c*d^2 - b*d*e + a*e
^2) + ((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 + 8*a^2)*e^2 - 2*(4*b*c*d*x^4 + (3*b^2 + 4*a*c)*d*x^2 + 4*a*b*d)*e)/(x^4*
e^2 + 2*d*x^2*e + d^2)))*e^(-2)/c, 1/4*((2*c*d - b*e)*sqrt(-c)*arctan(1/2*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b
)*sqrt(-c)/(c^2*x^4 + b*c*x^2 + a*c)) + 2*sqrt(c*x^4 + b*x^2 + a)*c*e + sqrt(c*d^2 - b*d*e + a*e^2)*c*log(-(8*
c^2*d^2*x^4 + 8*b*c*d^2*x^2 + (b^2 + 4*a*c)*d^2 + 4*sqrt(c*x^4 + b*x^2 + a)*(2*c*d*x^2 + b*d - (b*x^2 + 2*a)*e
)*sqrt(c*d^2 - b*d*e + a*e^2) + ((b^2 + 4*a*c)*x^4 + 8*a*b*x^2 + 8*a^2)*e^2 - 2*(4*b*c*d*x^4 + (3*b^2 + 4*a*c)
*d*x^2 + 4*a*b*d)*e)/(x^4*e^2 + 2*d*x^2*e + d^2)))*e^(-2)/c, 1/8*(4*sqrt(-c*d^2 + b*d*e - a*e^2)*c*arctan(-1/2
*sqrt(c*x^4 + b*x^2 + a)*(2*c*d*x^2 + b*d - (b*x^2 + 2*a)*e)*sqrt(-c*d^2 + b*d*e - a*e^2)/(c^2*d^2*x^4 + b*c*d
^2*x^2 + a*c*d^2 + (a*c*x^4 + a*b*x^2 + a^2)*e^2 - (b*c*d*x^4 + b^2*d*x^2 + a*b*d)*e)) + 4*sqrt(c*x^4 + b*x^2
+ a)*c*e - (2*c*d - b*e)*sqrt(c)*log(-8*c^2*x^4 - 8*b*c*x^2 - b^2 - 4*sqrt(c*x^4 + b*x^2 + a)*(2*c*x^2 + b)*sq
rt(c) - 4*a*c))*e^(-2)/c, 1/4*(2*sqrt(-c*d^2 + b*d*e - a*e^2)*c*arctan(-1/2*sqrt(c*x^4 + b*x^2 + a)*(2*c*d*x^2
 + b*d - (b*x^2 + 2*a)*e)*sqrt(-c*d^2 + b*d*e - a*e^2)/(c^2*d^2*x^4 + b*c*d^2*x^2 + a*c*d^2 + (a*c*x^4 + a*b*x
^2 + a^2)*e^2 - (b*c*d*x^4 + b^2*d*x^2 + a*b*d)*e)) + (2*c*d - b*e)*sqrt(-c)*arctan(1/2*sqrt(c*x^4 + b*x^2 + a
)*(2*c*x^2 + b)*sqrt(-c)/(c^2*x^4 + b*c*x^2 + a*c)) + 2*sqrt(c*x^4 + b*x^2 + a)*c*e)*e^(-2)/c]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x \sqrt {a + b x^{2} + c x^{4}}}{d + e x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x**4+b*x**2+a)**(1/2)/(e*x**2+d),x)

[Out]

Integral(x*sqrt(a + b*x**2 + c*x**4)/(d + e*x**2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x^4+b*x^2+a)^(1/2)/(e*x^2+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Error: Bad Argument Type

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x\,\sqrt {c\,x^4+b\,x^2+a}}{e\,x^2+d} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a + b*x^2 + c*x^4)^(1/2))/(d + e*x^2),x)

[Out]

int((x*(a + b*x^2 + c*x^4)^(1/2))/(d + e*x^2), x)

________________________________________________________________________________________